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Abstract

There are limitations and shortcomings to the Fourier transform method to detect accelerat-
ing targets because of the phenomenon known as Doppler smearing. In using a Pulse Doppler
Radar to detect a non-accelerating target in additive white Gaussian noise and to estimate
its radial velocity, the Fourier method provides an output signal-to-noise ratio (SNR) that
increases linearly with the number of pulses. When the target is accelerating, the Fourier
method may still be used to detect the target and estimate its median velocity, provided the
acceleration is small enough in the sense described in the paper. For a given acceleration,
when the number of pulses is increased, the output SNR of the Fourier method varies as
a concave function, increasing to a maximum and then decreasing, before the method fails
catastrophically. Thus the number of pulses and the acceleration have to be matched to
achieve optimum performance. Empirical formulae for the dependence of the optimum SNR
and the optimum number of pulses on the acceleration are given. The results are shown to
be relevant to the design of Generalized Likelihood Ratio Test (GLRT) based detectors that

apply a search over a grid.
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Résumé

Ils y des limites et des problémes associés avec 'utilisation de la méthode de transformdée
de Fourier pour la détection des cibles qui accélerent 3 cause du phénomene d’élargissement
Doppler. Dans l'utilisation des radars Doppler & impulsions pour la détection de cibles non
accélérante en présence de bruit blanc et Pestimation de la vélocité radiale, la méthode de
transformée de Fourier fournit un rapport de signal au bruit (SNR) qui augmente linéairement
avec le nombre de pulses. Quand la cible est en train d’accélérer la méthode de Fourier peut
étre encore utilisée pour détecter la cible et sa vitesse médiane en autant que 'accélération
soit suffisamment petite comme montrée dans ce rapport. Pour une accélération donnée,
quand le nombre de pulse augmente, le SNR résultant de la transformée de Fourier varie
comme une fonction concave, augmentant 4 un maximum et apres décroissant, avant que la
méthode échoue de fagon catastrophique. Ainsi le nombre de pulse et 'accélération de la
cible doivent étre relier ensemble pour accomplir une performance optimum. Des formules
empiriques donnant le SNR optimum en fonction du nombre de pulse et ’accélération sont
données. Les résultats sont relevant au développement de détecteurs utilisant un test de

rapport de probabilité généralisé qui applique une recherche a travers une grille.
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Executive Summary

The Fourier Transform is at the heart of a wide range of techniques that are used in HF
radar data analysis and processing. Mapping the data into the temporal frequency domain is
an effective way of recording the data such that their global characteristics can be assessed.
However, the change of frequency content with time is one of the main features we observe in
HF radar data. Because of this change of frequency content with time, radar signals belong

to the class of non-stationary signals.

One of the central problems in High Frequency (HF) radar data is the analysis of a time series.
The Fourier transform method, or Doppler processing method, has been generally used in
HF radar to detect targets that are moving with constant radial acceleration. Examples
of accelerating targets are manoeuvring aircrafts and missiles. In this report we show that
there are limitations and shortcomings to the Fourier transform method to detect accelerating
targets because of the phenomenon known as Doppler smearing. We show that when the
target is constantly accelerating, the Fourier method may still be used to detect target and
estimate its median velocity, provided the acceleration is small enough in the sense to be
described in this report. It is shown that for a given acceleration, the number of pulses cannot
be increased indefinitely without resulting in catastrophic failure of the method. Conversely,
for a given number of pulses, the acceleration cannot be arbitrarily large without resulting
in catastrophic failure of the method. Thus the number of pulses and the acceleration have

to be matched to achieve optimum performance.

Author, Thayananthan, Thayaparan, Limitations and strengths of the Fourier transform method to detect

accelerating targets, Defence Research Establishment Ottawa, DREO TM 2000-078, November 2000.




Sommaire

La transformée de Fourier est au cceur d’un large éventail de techniques qui sont utilisées
dans l’analyse et le traitement des données des radars & hautes fréquences. Le mappage
des données dans le domaine temporel de fréquence est une fagon effective d’enregistrer les
données tel que leurs caractéristiques globales peuvent &tre évaluer. Cependant, le change-
ment des composantes spectrales avec le temps est une des caractéristiques que nous obser-
vons dans les données radar & haute fréquence. Ces signaux radars appartiennent & la classe
des signaux non stationnaires & cause de ce changement de composantes spectrales avec le

temps.

Un des problémes centraux dans les données des radars & haute fréquence est 1’analyses
des séries temporelles. La méthode des transforme de Fourier ou la, méthode de traitement
Doppler a été généralement utilisée dans les radars & haute fréquence pour détecter des cibles
qui se déplace avec une accélération radiale constante. Exemples de cible qui accélérent sont
des avions et des missiles qui manceuvrent. Dans ce rapport, nous montrons qu’ils y des
limites et des problemes associés avec 1'utilisation de la méthode de transformée de Fourier
pour la détection des cibles qui accélérent & cause du phénomene d’élargissement Doppler.
Nous montrons que quand la cible est en train d’accélérer la méthode de Fourier peut étre
encore utilisée pour détecter la cible et sa vitesse médiane en autant que ’accélération soit.
suffisamment petite comme montrée dans ce rapport. Ce rapport montre que pour une
accélération donne, le nombre de pulse ne peut étre augmenter indéfiniment sans que la
méthode échoue de fagon catastrophique. D’un autre cotée, pour un nombre donne de
pulses, I'accélération ne peut étre infiniment grand sans que la méthode échoue de facon
catastrophique. Ainsi le nombre de pulse et ’accélération doivent étre relier ensemble pour

accomplir une performance optimum.

Auther, Thayananthan, Thayaparan, Limitations et points forts de la méthode de transformée de Fourier
pour la détection de cibles qui accélére, Center de Recherches pour la Défense, Ottawa, DREQ TM
2000-078, Novembre 2000.
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1 Introduction

The Fourier Transform is at the heart of a wide range of techniques that are used in HF
radar data analysis and processing. Mapping the data into the temporal frequency domain is
an effective way of recording the data such that their global characteristics can be assessed.
However, the change of frequency content with time is one of the main features we observe
in HF radar data. Because of this change of frequency content with time, radar signals
belong to the class of non-stationary signals. One of the central problems in High Frequency
(HF) radar data is the analysis of a time series. The Fourier transform method, or Doppler
processing method, has been generally used in HF radar to detect targets that are moving
with constant radial acceleration. Examples of accelerating targets are manoeuvring aircrafts

and missiles.

In this paper, the radar is assumed to be of the Pulse-Doppler type, that is, it sends out
a uniform train of radio frequency pulses and phase-coherently receives their returns. It is
also assumed that the receiver has pulse compression capability so that a pulse return from

an isolated target can be represented by a single sample of the compressed pulse.

A moving target with low per-pulse signal-to-noise ratio (SNR) may be efficiently detected
by processing the sequence of Pulse-Doppler radar returns by coherent integration [ Whalen,
1971; Meyer and Mayer, 1973; Wehner, 1987; Scheer, 1993]. Under the simplifying assump-
tions of zero range-walk and constant radial velocity, coherent integration is achieved by
taking the Fourier power spectrum of the sequence of complex amplitudes of the received
pulses and locating its maximum. If the maximum value exceeds a threshold then the pres-
ence of a target is declared, and the location of the maximum is taken to be an estimate
of the radial velocity. In an additive white noise background, the Fourier method gives an
output SNR that is proportional to the number of pulses [Meyer and Mayer, 1973].

In this paper, we relax the assumption of constant radial velocity and consider using the
Fourier method to detect targets that are moving with constant radial acceleration. Thus
the aim of the paper is to study the phenomenon usually referred to as Doppler smearing
and quantify the performance of the Fourier method. In this paper, the term acceleration
may be interpreted as the magnitude of the acceleration, as the conclusions depend only on
the magnitude of the acceleration. It is empirically shown that when the target is constantly
accelerating, the Fourier method may still be used to detect the target and estimate its




median velocity, provided the acceleration is small enough in the sense to be described in
this paper.

It is shown that for a given acceleration, the number of pulses cannot be increased indefinitely
without resulting in catastrophic failure of the method. Conversely, for a given number of
pulses, the acceleration cannot be arbitrarily large without resulting in catastrophic failure
of the method. Moreover, for a given acceleration, when the number of pulses is increased,
the output SNR varies as a concave function of the number of pulses, achieving a maximum
well before the failure occurs. For a given number of pulses, the ouput SNR monotonically
decreases with the acceleration, until the failure occcurs. Thus the number of pulses and the
acceleration have to be matched to achieve optimum performance.

The results are presented in terms of a normalized value of the acceleration that takes
into account the radar carrier frequency and the pulse repetition fregency. This makes the
results widely useful. The results may be used to determine whether, in a given scenario
of an accelerating target, the Fourier method can be used or a more sophisticated method
such as the Generalized Likelihood Ratio Test (GLRT) is required. In scenarios where the
Fourier method is not desirable, and where the GLRT method is considered. it is shown how
the results may be used to determine the critical spacing of the grid over which the search

is applied.




2 Signal Model

Suppose the Pulse-Doppler radar sends out N pulses, one every T seconds, and there is a
target moving with constant radial acceleration. Assume that the change in range during the
observation period of NT seconds, known as range walk, is negligible compared to the radar
range resolution as determined by the width of the compressed pulse. Then the complex
amplitudes of the N range-compressed pulses taken at the range of the target have the form

r(n) = s(n) + v(n) (1)

where
s(n) = aedotbintzben?) (2)
forn=0,1,2,3,...,(N — 1), is the noise-free signal, and v(n) is a sequence of independent

samples of complex Gaussian noise with mean zero and variance o2.

The signal parameters a and b, are the target signal amplitude and phase respectively. The
signal parameters b; and b, are the normalized initial radial velocity and the normalized

radial acceleration respectively.

2.1 Normalized Initial Radial Velocity and Radial Acceleration

The normalized initial radial velocity b; is defined as

by =u (ill/\z) . (3)

where u is the initial radial velocity in meters/sec towards the radar, T is pulse repetition
interval in secs, and A is the carrier wavelength in meters. Similarly, the normalized radial

acceleration b, is defined as

- (47;:r2 ) | » W
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where f is the radial acceleration in meters/sec/sec towards the radar. It can be seen that

both of the above normalized quantities are non-dimensional.

To obtain these relations note that the decrement in range d, measured from the beginning of
the observation interval, as a function of continuous-time ¢, is d(t) = ut + 5 ft?, and therefore

the phase increment of a pulse as a function of discrete-time, or pulse index, is given by

T2
27 (——2d(;T)) =u (#) n+ %f (4 /\T ) n?. (5)

In the rest of the discussion, the terms velocity and acceleration refer to normalized radial

velocity and normalized radial acceleration respectively.

2.2 Per-Pulse Signal-to-Noise Ratio
The Per-Pulse Signal-to-Noise Ratio is defined as

SNR1ge = <3>2. (6)
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3 The performance of the Fourier method in detecting
a non-accelerating target

Although a given signal can be represented in many different ways, the most important are
the time and frequency representations. The majority of signals encountered in our everyday
life are directly related to time. The frequency representations, on the other hand, were not
popular until the early 19th century when Fourier first proposed the harmonic trigonometric
series. Since then, the frequency representation has become one of the most powerful and
standard tools for studying signals. By using frequencyk representations, we could better
understand many physical phenomenon and accomplish many things that cannot achieved
based on time representations. While the time domain function indicates how a signal’s
amplitude changes with time, the frequency domain function tells how often such changes

take place. The bridge between time and frequency is the Fourier Transform.

The signal is expanded in terms of sinusoids of different frequencies [Brigham, 1974; Bloom-
field, 1976; Papoulis 1977; Bracewell, 1978]

s(t) = \/% [ Stwyei du (7

The waveform is made up of the addition (linear superposition) of the simple waveforms,
e’“t each characterized by the frequency, w, and contributing a relative amount indicated

b

by the coefficient, S(w). S(w) is obtained from the signal by

S(w) = \/% [ styea (8)

and is called the spectrum or the Fourier Transform. The square of the Fourier Transform
| S(w) |? is called the Fourier power spectrum, which indicates how the signal energy is
distributed in the frequency domain. While the Fourier Transform S(w) is a linear function
of the analyzed signal, the Fourier power spectrum | S(w) |? is quadratic to the signal s(¢).
The Fourier Transform S(w) in general is complex, whereas the power spectrum | S(w) |2
is always real. The Fourier Transform and the Fourier power spectrum are the two most

important tools for frequency analysis.
Before investigating the case of an accelerating target, it is helpful to review the case of a
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non-accelerating target.

When the acceleration is zero, and the noise is absent, the Fourier power spectrum

2

1 N-1 .
SW) = = |3 s(mjen 9
n=0
@ N |
= — elhimwin (10)
N|Z

has a unique maximum which is attained when w = b; mod 2. Assuming —7 < b; < 7, the

maximizing w is an estimate of the normalized radial velocity.

Therefore, the target can be detected and the velocity parameter b; can be estimated by

using peak detection on the noisy version

N-1

Z r(n)e~vm

n=0

(11)

of S(w), that is, maximizing I'(w) with respect to w, and declaring the presence of a target if
the maximum value exceeds a threshold; the maximizing w, which is now a random variable
due to the presence of noise, is taken as the estimate of b;. This method is equivalent to the
GLRT.

The notion of output SNR of the method comes from the observation that tinder the ‘noise-
only’ hypothesis 4T'(w) is a central Chi-Squared random variable of two degrees of free-
dom, for all w, whereas under the ‘signal-and-noise’ hypothesis ZT(b1) is a non-central Chi-

2
Squared random variable of two degrees of freedom and non-centrality parameter 2N (g)
[Whalen, 1971; Meyer and Mayer, 1973].

We, therefore, consider

a

2
SNRyyt = N (;> , (12)

as this can be used to approximately compute the probability of detection, assuming that
the maximum of I'(w) occurs at w = ;. Note that SNRyt is a monotonically increasing

6




function of N. More specifically, it is a linearly increasing function of N. Normalizing this
with respect to SN Rpulse gives

Ngain = SNR g




4 The performance of the Fourier method in detecting
an accelerating target

When the acceleration is non-zero, and the noise is absent, the Fourier power spectrum is

N-1 2

Sw) = =3 s(n)e7m| | (15)
N n=0
2 [N=1 2
= 2|} et itan?) (16)
N n=0
Some insight into this function can be gained by rearranging it as
2 |N-1 —)(nN=1Y 1y (0 N-1)2 2
S(LU) — CL_ Z e]((bm )( 3 )+2b2( 2 ) ) , (17)
N n=0
where
N -1
bm = by + <—2—> by (18)

is the normalized median velocity over the time interval 0 to (N — 1)T seconds. For simplicity
of discussion assume that — < b,, < w. The rearrangement shows that S (w) is symmetric
with respect to w = by,, that is, S(by, +v) = S(b,, — v), and the spread of the function about
w = by, depends only on b, and N. More specifically, when considered as a function of ba,
S(w) depends only on the magnitude of b,.

A closed-form expression for the above sum seems difficult to obtain. But numerical eval-
uations suggest that, for a given acceleration b,, there is a threshold value N, of N , below
which S(w) has a unique maximum, and above which S(w) has at least two equal maxima.
The threshold value N; depends on the acceleration b, alone. Moreover, N, is a decreasing

function of b;. Thus N, implicitly defines the maximum allowable acceleration for a given
N.




4.1 The Region N < N,

For N < N, by symmetry considerations, the unique maximum of S(w) is attained when
w = by,. Thus

w S(w) = S(bm), | (19)
a? |2 N-1)2 2
= — RIS (20)
N|&
Therefore, in this region, we have
S(bm
SNRout = (0—2) (21)
and
SNR,
SNRypin = ——-out (22)
gain SNRpulse
S(bm) A
= a2 (23)
N-1 2
= LIy g2’ (24)
N n=0

Provided that SNRg¢ is adequate, peak detection still provides a means of detecting an
accelerating target and estimating its median velocity. However, as expected, SNR ¢ is not
a linearly increasing function of N. It is not even a monotonically increasing function of N.
Rather it is a concave function of N and attains a maximum value in the region NV < N;.
The optimum value N,y of N, where the SNR¢ is maximum, depends on the parameter

b, alone. Moreover, N,y is a decreasing function of b,.

For N < N,p, the concentration of the Fourier power spectrum S(w) about w = by, increases
as N increases towards Noy. For N > Ny, the concentration of the Fourier power spectrum

S(w) about w = b,, decreases as N increases towards V;.

4.2 The Region N > N,

For N > N, the Fourier power spectrum S(w) has at least two maxima located symmetrically

about w = b,,. Moreover, it is spread symmetrically about w = b,,, and the amount of spread

9




increases rapidly with IV, soon covering the entire interval of length 2r. The combination
of the significantly low maxima and the spectral spreading makes it practically impossible
to discern the presence of the target or estimate its spectral location. Therefore, the use of
peak detection as a method of detecting an accelerating target and estimating its median

velocity is precluded in this region.
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5 Numerical Examples

Figure 1 shows how the Fourier spectrum changes when N (referred to as the length) is
increased while the acceleration is held constant. Here we can see the spectrum concentration
first increasing, then slowly decreasing, and eventually rapidly decreasing with multiple peaks

appearing.

Figure 2 shows how the Fourier spectrum changes when the acceleration is increased while
N is held constant. Here we can see the spectrum concentration first slowly decreasing and

then rapidly decreasing with multiple peaks appearing.

In all cases the median velocity was held at zero for the purpose of compact representation,

but the conclusions are independent of this assumption.
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Power

Fourier Spectra for Acceleration 0.00015 and Various Lengths
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Figure 1: Effect of increasing length.
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Power

Fourier Spectra for Length 512 and Various Accelerations
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Figure 2: Effect of increasing acceleartion.
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6 Performance Graphs

Graphs quantifying the performance of the Fourier method in detecting an accelerating target
are given in this section. The graphs were obtained by empirically studying the Fourier power
spectrum for values of N ranging from 64 to 512 and acceleration b, ranging from 0.00005
to 0.0004.

Figures 3 and 4 show the dependence of the SNRgain on Length N of the signal for various
values of the acceleration b,. We can see that for by > 0.00012, the failure point has been
achieved, that is, N; < 512, and for b, > 0.00006, the optimum point has been achieved,
that is Noy < 512.

Figure 5 shows the dependence of the Optimum SN Rgain on acceleration. Figure 6 shows

the dependence of the Optimum Length Nopt on acceleration.

Figure 7 shows the dependence of the log of Optimum SNRgain on the log of acceleration.
From the linear least squares fit we can infer that

10 loglO SNRgain,Opt ~ '—5 loglo b2 + 4537 (25)

or

SNR‘gain’opt ~ 100'4537132_0'5‘ (26)

Figure 8 shows the dependence of the log of optimum length on the log of acceleration. From
the linear least squares fit we can infer that

or

Nopt ~ 100'56061)50'5. (28)
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Combining these,

SNRgain opt = 10712 Nops. (29)

Thus when operating at the optimum point N = N,;, the loss with respect to the non-
accelerating case is 1.12dB. This is also the loss with respect to optimum coherent integration.

Every effort was made to ensure the accuracy of the above results. However, caution must
be exercised in applying them outside the studied range, especially for larger accelerations.

Figure 9 shows the dependence of the log of threshold SNRgain on the log of acceleration.

From the linear least squares fit we can infer that

10log,, SNR,

gain,opt ~ —4.677 ].Oglo b2 + 3746, (30)

or

SNR’gain,Opt ~ 100'3746b2_0'4677. (31)

Figure 10 shows the dependence of the log of threshold length on the log of acceleration.

From the linear least squares fit we can infer that

log,o Nt = —0.5078 log;( by + 0.6859, (32)
or
N, A 100685905078, (33)
Combining these,
SNRgain,opt ~ 10703745 Nj0.9210, (34)
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SNR gain vs. Length for various Accelerations
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Figure 3: The dependence of SNR on length for various accelerations.
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SNR gain (dB)

SNR gain vs. Length for various Accelerations
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Figure 4: The dependence of SNR on length for various accelerations.
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Optimum SNR gain
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Figure 5: The dependence of the optimum SNR on the accelerations.
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Figure 6: The dependence of the optimum length on the accelerations.
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Optimum SNR gain
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Figure 7: The dependence of the log10(optimum SNR) on the log10(acceleration).
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Optimum Length
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Figure 8: The dependence of the log10(optimum length) on the log10(acceleration).
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Threshold SNR gain
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Figure 9: The dependence of the log10(threshold SNR) on the log10(acceleration).
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Threshold Length
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Figure 10: The dependence of the log10(threshold length) on the logl0O(acceleration).
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7 Application to GLRT

In the case of an acceleratmg target, the GLRT method seeks to maximize A(c,c;) =
¥ ‘Z '~} r(n)e~ilantzen )‘ with respect to ¢; and c, [Whalen, 1971; Kay, 1993]. A crude
way of doing this is to evaluate A(cy,cp) on a rectangular grid in the c¢1-c2 plane and choose
the maximum. The results of the previous section imply that the grid spacing in the c;

dimension cannot be less than a critical value if the method is to work for all values of bs.

To see this, first note that, for a fixed cj, maximizing A(cy, ¢;) with respect to ¢; is equivalent
to using the Fourier method to detect a target with initial velocity b; and acceleration (bo—ca).
Suppose the grid spacing in the ¢, dimension is 2A. Then for every b, there is a ¢, grid value
such that |by — c3] < A. For this fixed ¢, value, the noise-free version of A(cy, ¢o) will have
a unique maximum with respect to ¢; provided the threshold length N, corresponding to
acceleration |b; — co| is greater than N. To ensure uniqueness of the maximum for every b,,
we require A < A+, where A is the acceleration for which the given N is the threshold
length.

The SNRgyip, is at most N, and depends on |b; — c]. We can use the graphs to choose A
so that the loss of SNRgain is less than a given value.
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8 Conclusions

The Fourier transform method, or Doppler processing method, has been generally used in
HF radar to detect targets that are moving with constant radial acceleration. Examples
of accelerating targets are manoeuvring aircrafts and missiles. In this report we show that
there are limitations and shortcomings to the Fourier transform method to detect accelerating

targets because of the phenomenon known as Doppler smearing.

We considered using the Fourier method for detecting constantly accelerating targets and
estimating their median velocities, and empirically showed that there are decreasing functions
Nopt(bo) and N;(bg) of the acceleration by, termed the optimum length and the threshold
length, respectively, with the following properties:

1. in the region N < N; the Fourier power spectrum of the noise-free signal has a unique
maximum at the median velocity, and outside of which it has at least two maxima; thus N,

implicitly defines the maximum allowable acceleration for a given N.

2. in the region N < N; the SNRgain varies as a concave function of N achieving a maximum

at N = Ngp; moreover Ny < Ny

Formulae were given for N, and corresponding SNR in terms of the acceleration. Similarly,
Formulae were given for N; and corresponding SNR in terms of the acceleration. These
formulae might lead to the design of detectors that are of manageable complexity yet have

near optimum performance.

As an application, we considered a GLRT based detector that applies a search over a grid.
We showed that the grid spacing must be less than a critical value. We also showed how to

choose the grid spacing so as to achieve a given SNRgain-
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